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Abstract A convergence criterion of cluster expansion is presented in the case of an abstract
polymer system with general pair interactions (i.e. not necessarily hard core or repulsive).
As a concrete example, the low temperature disordered phase of the BEG model with infinite
range interactions, decaying polynomially as 1/rd+λ with λ > 0, is studied.

Keywords Cluster expansion · Abstract polymer models · Infinite range interactions

1 Introduction

The abstract polymer gas is an important tool to study the high temperature/low density
or low temperature phase of many statistical mechanics models. Generally speaking, the
abstract polymer model consists of a collection of objects (the polymers) which play the
role of the particles of the gas. These polymers have a given activity and they interact via a
hard core pair potential suitably defined. Typically, one wants to show that the pressure of
this polymer gas can be written in terms of an absolutely convergent series if the activities
are taken sufficiently small.

The first example of such a model appeared in [9] where the polymers were finite non
overlapping subsets of the cubic lattice Z

d . The authors proved convergence of the pres-
sure via the method of Kirkwood-Salsburg equations. Subsequently, the same system stud-
ied in [9] was treated in [18] and [5] via cluster expansion methods based on tree graph
inequalities.

In [11] the most general version of this system was given. There, polymers were simply a
collection of objects with a given activity and interacting through an hard core pair potential
introduced via a symmetric and reflexive relation in the polymer space. Polymers belonging
to this relation were called incompatible, and compatible otherwise. The hard core condition
was simply to forbid configurations of polymers containing pairs of incompatible polymers.
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Differently from the cases considered previously, in which polymers had a cardinality and a
size, the Kotecký-Preiss polymers were characterized only by the activity.

In [7] the convergence condition for the Kotecký-Preiss polymer gas was slightly im-
proved and the proof was greatly simplified, being reduced to a simple inductive argument,
as it was shown very clearly in [12] and [19]. In particular, in [19] it has been observed
that the Dobrsushin’s proof works even for more general abstract polymer gases, in which
polymers may interact through a repulsive soft-core pair interaction.

Very recently [8] the Kotecký-Preiss and the Dobrushin conditions for convergence of
the abstract polymer gas with purely hard core interactions were reobtained via the standard
cluster expansion methods and a new improved condition was given by exploiting an old
tree graph identity valid for hard core systems due to O. Penrose [14].

In all these works, the basically hard core character of the interaction seemed to be an
essential ingredient to control the convergence. Exceptions can be found in [6, 10]. In [6]
a contour model with interaction (exponentially decaying al large distances) is proposed.
However the model is rewritten in term of the usual hard core polymer gas where polymers
are objects more complicated than the original contours. This philosophy has also been pur-
sued in [10] where a one-dimensional contour model with long range interaction is rewritten
in term of new objects with hard core pair interactions.

It would be of interest to treat also cases in which polymers interact via more general pair
interactions, e.g., not necessarily repulsive, not necessarily hard core, not necessarily finite
range. Such abstract polymer model could be a useful tool in the study of spin systems at
low temperature interacting via infinite range polynomially decaying potential, see e.g. [13].

In this paper we develop a model of abstract polymers (of the type of [11]) with inter-
actions more general than the hard-core. Our polymers interact through a “short distance”
repulsive (not necessarily hard core) pair potential which is non zero only on pair of incom-
patible polymers, plus a pair potential with no definite sign (hence it can be attractive), acting
only on pairs of compatible polymers. We give a condition of convergence for the pressure
of this gas by using a cluster expansion method similar to the one developed in [8]. However,
differently from [8], we could not use here the Penrose identity, since our interaction is not
purely hard-core. We rather used another well known tree graph identity originally proposed
in [3] and further developed in [1].

The rest of the paper is organized as follows. In Sect. 2 we introduce the model, notations
and the main result of the paper. In Sect. 3 we give the proof of our result (Theorem 1).
Namely, in Sect. 3.1 we present the tree graph identity and show how it can be used to
bound the Ursell coefficients of the Mayer series of our polymer model. In Sect. 3.2 we give
the convergence argument based on map iterations developed in [8]. In Sect. 3.3 we conclude
the proof of our main theorem. Finally in Sect. 4, as an example, we use Theorem 1 to study
the low temperature disordered phase of the BEG model with infinite range interactions with
polynomial decay of the type 1/rd+λ with λ > 0.

2 Polymer Gas: Notations and Results

2.1 The Model

Let P denotes the set of polymers (i.e. P is the single particle state space). We will assume
here that P is a countable set. We associate to each polymer γ ∈ P a complex number zγ

(a positive number in physical situations) which is interpreted as the activity of the poly-
mer γ . We will denote z = {zγ }γ∈P . We introduce a symmetric and reflexive relation � in
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P ×P . If (γ, γ ′) ∈ �, we write γ � γ ′ and, following the tradition, we say that γ and γ ′

are incompatible. Conversely, if (γ, γ ′) /∈ �, we write γ ∼ γ ′ and we say that γ and γ ′ are
compatible. In most of the concrete realizations of this abstract polymers gas the condition
γi � γj means (in some sense depending on the geometry of the realization) that γi and γj

are near (e.g. overlapping) and γi ∼ γj are far apart.
Polymers interact through a pair potential. Namely, the energy E of a configuration

γ1, . . . , γn of n polymers is given by

E(γ1, . . . , γn) =
∑

1≤i<j≤n

V (γi, γj ) (2.1)

where pair potential V (γ, γ ′) is a symmetric function in P ×P taking values in R ∪ {+∞}.
Fix now a finite set � ⊂ P (the “volume” of the gas). Then the probability to see the

configuration (γ1, . . . , γn) ∈ �n is given by

Prob(γ1, . . . , γn) = 1

��

zγ1zγ2 · · · zγne
−∑

1≤i<j≤n V (γi ,γj )

where the normalization constant �� is the grand-canonical partition function in the volume
� and is given by

��(z) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)⊂�n

zγ1zγ2 · · · zγne
−∑

1≤i<j≤n V (γi ,γj ). (2.2)

Note that the configurations γ1, . . . , γn for which E = +∞ are those with zero probability
to occur, i.e. are forbidden.

We assume that the pair potential V (γi, γj ) is the sum of a repulsive (positive) interaction
U(γi, γj ) which is non zero only when γi � γj plus an interaction W(γi, γj ) which is non
zero only when γi ∼ γj . The repulsive potential U(γi, γj ) should be interpreted as the short
range interaction, while W(γi, γj ) plays the role of the long range part of the interaction. We
define these two interactions as follows. Let P2 = P × P . Let C = {(γ, γ ′) ∈ P2 : γ ∼ γ ′}
and I = {(γ, γ ′) ∈ P2 : γ � γ ′} and let us give the functions

U� : I → [0,+∞) ∪ {∞} : (γ, γ ′) �→ U�∼(γ, γ ′),

W∼ : C → (−∞,+∞) : (γ, γ ′) �→ W∼(γ, γ ′).

We put

V (γi, γj ) = U(γi, γj ) + W(γi, γj ) (2.3)

with the short range given by

U(γi, γj ) =
{

0 if γi ∼ γj ,
U�(γi, γj ) if γi � γj , (2.4)

while the long range interaction is

W(γi, γj ) =
{

W∼(γi, γj ) if γi ∼ γj ,
0 if γi � γj . (2.5)
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Note that we allow U(γi, γj ) to take the value +∞, while W(γi, γj ) is always a finite
number. Observe also that we don’t make any hypothesis on the sign of W(γi, γj ), so this
interaction could be for some pairs attractive and for other pairs repulsive.

Since we are admitting non purely repulsive interaction among polymers, we also need
to require that the potential energy E is stable in the classical sense. This can be achieved
by imposing that the long range interaction W(γi, γj ) satisfies a stability property. Namely,
we assume that there exists a function B(γ ) ≥ 0 such that

∑

1≤i<j≤n

W(γi, γj ) ≥ −
n∑

i=1

B(γi) (2.6)

for all n ∈ N and all (γ1, . . . , γn) ∈ Pn. Such a condition implies that �� is convergent and

�� ≤ 1 +
∑

n≥1

1

n!
[∑

γ⊂�

zγ eB(γ )

]n

≤ exp

{∑

γ∈�

zγ eB(γ )

}
≤ |�|max

γ∈�
exp{zγ eB(γ )}.

Actually, (2.6) implies that ��(z) is analytic in the whole C
|�| (|�| is the cardinality of �).

As we said in the introduction, the usual choice available in the literature is U�(γi, γj ) =
+∞ for all (γ, γ ′) ∈ I and W∼(γi, γj ) = 0 for all (γ, γ ′) ∈ C (purely hard core pair po-
tential), but it has been also treated [19] the case U�(γi, γj ) ≥ 0 if γi � γj and γi �= γj ,
U�(γ, γ ) = +∞ for all γ ∈ P and of course W(γi, γj ) = 0 (soft core repulsive and hard
core self repulsive pair potential).

We remark that, even in the case that the long range interaction W(γi, γj ) = 0 for all
pairs, in this paper we are still treating cases which are more general than those stud-
ied until now. Namely, estimates of Sect. 3 below hold for every repulsive interaction
0 ≤ U(γi, γj ) ≤ +∞. This means for example that we don’t need to impose the hard core
self repulsion condition (i.e. U(γ,γ ) = ∞, for all γ ∈ P) which instead is explicitly re-
quired (see e.g. [19]) in order to develop the Dobrushin induction argument. However, in
view of the possible connections with the low temperature phase of spin systems with in-
finite range interactions, we think that the most interesting situation treated in the present
paper is the case W(γi, γj ) �= 0, i.e. when a large distance potential, possibly attractive and
possibly infinite range, is acting among polymers.

2.2 Results

The pressure of this gas, namely log��, can be written as a formal series through a Mayer
expansion on the Gibbs factor exp{−∑

1≤i<j≤n V (γi, γj )}. Namely, a standard calculations
(see e.g. [5]) gives

log��(z) =
∞∑

n=1

1

n!
∑

(γ1,...,γn)⊂�n

φT (γ1, . . . , γn)zγ1 · · · zγn (2.7)

with

φT (γ1, . . . , γn) =
{

1 if n = 1,∑
g∈Gn

∏
{i,j }∈Eg

(e−V (γi ,γj ) − 1) if n ≥ 2, (2.8)

where Gn is the set all connected graphs with vertex set {1,2, . . . , n}. We recall that a graph
g ∈ Gn is a pair g = (Vg,Eg) where Vg = {1,2, . . . , n} is the set of vertices of g and Eg ⊂
{{i, j} ⊂ {1,2, . . . , n}} is the set of edges of g. We also recall that g = (Vg,Eg) is connected
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if for any A,B such that A ∪ B = Vg and A ∩ B = ∅, there exists {i, j} ∈ Eg such that
A ∩ {i, j} �= ∅ and B ∩ {i, j} �= ∅.

Equation (2.7) makes sense only for those z for which the formal series in the r.h.s. of
(2.7) converges absolutely. To study absolute convergence, we will consider the positive
term series

|log��| (ρ) =
∞∑

n=1

1

n!
∑

(γ1,...,γn)⊂�n

|φT (γ1, . . . , γn)|ργ1 · · ·ργn (2.9)

where now ργ ∈ [0,+∞), for all γ ∈ P and ρ = {ργ }γ∈P . Of course |log��(z)| ≤
|log��| (ρ) for z in the polydisk {|zγ | ≤ ργ }γ∈P .

We further define, for each γ0 ∈ P , a function 	
γ0
P (ρ) directly related to (2.9) (a “pinned”

sum defined in the whole set P) as follows

	
γ0
P (ρ) =

∞∑

n=0

1

n!
∑

(γ1,γ2,...,γn)∈Pn

|φT (γ0, γ1, . . . , γn)|ργ1 · · ·ργn . (2.10)

Clearly, if we are able to show that 	
γ0
P (ρ) converges, then |log��| (ρ) and hence

|log��(z)| for |zγ | ≤ ργ also converge, since it is easy to check that

|log��| (ρ) ≤ |�| sup
γ0∈�

ργ0	
γ0
P (ρ). (2.11)

To understand the meaning of the series 	
γ0
P (ρ) just observe that its finite volume version

	
γ0
P (ρ), namely

	
γ0
� (ρ) =

∞∑

n=0

1

n!
∑

(γ1,γ2,...,γn)∈�n

|φT (γ0, γ1, . . . , γn)|ργ1 · · ·ργn (2.12)

is directly related to log��(ρ�). It is immediate to see that

	
γ0
� (ρ) = ∂

∂ργ0

|log��| (ρ). (2.13)

The main result of the paper is a convergence criterion for the positive series (2.10). Such
criterion can be considered as a generalization of the Kotecký-Preiss criterion for polymer
system interacting through a pair potential which is not purely hard core. The criterion can
be stated as the following theorem.

Theorem 1 Let μ : P → [0,∞) : γ �→ μγ be a non negative valued function and let, for
each γ ∈ P , ργ ∈ [0,∞) such that

ργ eB(γ ) ≤ μγ e−∑
γ̃∈P F(γ,γ̃ )μγ̃ , ∀γ ∈ P (2.14)

where B(γ ) is the function defined in (2.6) and

F(γi, γj ) =
{ |W(γi, γj )| if γi ∼ γj ,

|e−U(γi ,γj ) − 1| if γi � γj . (2.15)

Then the series 	γ0(ρ) [defined in (2.10)] converges and satisfies ργ0	γ0(ρ) ≤ μγ0 .
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Remark Observe that in the usual case U hard-core and W = 0 one obtains from Theorem 1
the usual Kotecký-Preiss condition. We recall however that when W = 0, i.e. when polymers
interact just through a purely repulsive potential, one can do better than (2.14). In particular,
for the purely hard core case (i.e. U�(γ, γ ′) = ∞ for all (γ, γ ′) ∈ I and W∼(γ, γ ′) = 0
for all (γ, γ ′) ∈ C), it has been shown in [8] that the condition (2.14) can be considerably
improved by taking advantage of the Penrose tree identity [14] (see also [8, 15, 19]), valid
in the case of purely hard core interactions.

3 Proof of Theorem 1

The strategy of the proof is quite similar to the one used in [8]. In particular we use here
the very same convergence argument for positive series which has been developed in [8].
On the other hand, in the present case we cannot use the Penrose identity in order to bound
the Ursell coefficients |φT (γ1, . . . , γn)|, since the pair potential (2.3) is not purely hard-core
(and also not purely repulsive). We will rather make use of another well known “tree graph
identity” originally proved in [3] (see also [1, 4, 16, 17]).

3.1 Tree Graph Inequality for |φT (γ0, γ1, . . . , γn)|
We state the so called tree graph identity [1, 3, 4] by using the notations of [17] and [16].
We use the short notation In = {1,2, . . . , n}. A graph τ = (In,Eτ ) ∈ Gn is called a tree if
and only if its edge set Eτ has cardinality equal to n− 1. Let us denote by Tn the set of trees
with vertex set In.

In the following whenever U is a finite set, |U | denotes its cardinality.

Lemma 2 (Tree graph identity) Let Vij , with 1 ≤ i < j ≤ n be n(n − 1)/2 real numbers,
then the following identity holds

∑

g∈Gn

∏

{i,j }∈Eg

(e−Vij − 1) =
∑

τ∈Tn

∏

{i,j }∈Eτ

(−Vij )

∫
dμτ (tn−1,Xn−1)e

−K(Xn−1,tn−1) (3.1)

where:

• tn−1 denote a set on n − 1 interpolating parameters tn−1 ≡ (t1, . . . , tn−1) ∈ [0,1]n−1;
• Xn−1 denote a set of “increasing” sequences of n − 1 subsets, Xn−1 ≡ X1, . . . ,Xn−1 such

as ∀i, Xi ⊂ In, we must have Xi ⊂ Xi+1, |Xi | = i and X1 = {1};
• K(Xn−1, tn−1) is a convex decomposition of the potential, explicitly given by

K(Xn−1, tn−1) =
∑

1≤i<j≤n

t1({i, j}) · · · tn−1({i, j})Vij (3.2)

where

tl({i, j}) =
{

tl ∈ [0,1] if i ∈ Xl and j /∈ Xl or vice versa,
1 otherwise

(a pair {i, j} such that i ∈ Xl and j /∈ Xl or vice versa is said to “cross” Xl);
• The measure

∫
dμτ (tn−1,Xn−1)[· · ·] .=

∫ 1

0
dt1 · · ·

∫ 1

0
dtn−1

∑

Xn−1
comp. τ

t
b1−1
1 · · · tbn−1−1

n−1 [· · ·] (3.3)
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has total mass equal to one (i.e. it is a probability measure). In (3.3) “Xn−1comp.τ” means
that for all i = 1,2, . . . , n − 1, Xi contains exactly i − 1 edges of τ and bi is the number
of edges in τ which “cross” Xi .

We want to use (3.1) to bond |φT (γ1, . . . , γn)|. This formula is useful when the pair
potential is not purely repulsive. However, due to the restriction Vij finite (otherwise the
r.h.s. of (3.1) is not well defined), one in general can apply (3.1) only if the pair potential is
finite and absolutely integrable, see [4], which is a quite restrictive condition. In particular
this rules out a pair potential with hard core at short distances which is precisely one of the
situations we would like to treat.

We show here that it is possible to give meaning to r.h.s. of (3.1) even when some among
the Vij ’s take the value ∞ (the l.h.s. of (3.1) makes sense even in this case). This is possible
due to our assumption that the pair potential is the sum of a purely repulsive part plus a
stable potential. We define

UH (γi, γj ) =
{

H if U(γi, γj ) = ∞,
U(γi, γj ) otherwise,

and VH,J (γi, γj ) = UH (γi, γj ) + W(γi, γj ). Then, for any fixed (γ1, . . . , γn) ∈ Pn

φT (γ1, . . . , γn) = lim
H→∞

∑

g∈Gn

∏

{i,j }∈Eg

(e−VH (γi ,γj ) − 1).

We can now use (3.1) for the finite potential VH and we get

∑

g∈Gn

∏

{i,j }∈Eg

(e−VH (γi ,γj ) − 1)

= lim
H→∞

∑

τ∈Tn

∏

{i,j }∈Eτ

(−VH,J (γi, γj ))

∫
dμτ (tn−1,Xn−1)e

−KH (Xn−1,tn−1)

where

KH (Xn−1, tn−1) =
∑

1≤i<j≤n

t1({i, j}) · · · tn−1({i, j})VH (γi, γj ).

Now, for fixed τ = (In,Eτ ) ∈ Tn and (γ1, . . . , γn) ∈ Pn , let us consider the factor

wτ
H (γ1, . . . , γn) =

∏

{i,j }∈Eτ

|VH,J (γi, γj )|
∫

dμτ (tn−1,Xn−1)e
−KH (Xn−1,tn−1).

By the assumptions (2.3–2.5), the edges {i, j} ⊂ In are naturally partitioned into two dis-
joint sets EH

n and En\EH
n where EH

n = {{i, j} ⊂ In : γi � γj )}. Thus also the edges of the
tree τ are partitioned into two disjoint sets EH

τ and Eτ\EH
τ where EH

τ = Eτ ∩ EH
n . So we

have

wτ
H (γ1, . . . , γn)

=
∏

{i,j }∈Eτ \EH
τ

|W(γi, γj )|
∏

{i,j }∈EH
τ

UH (γi, γj )

∫
dμτ (tn−1,Xn−1)e

−KH (Xn−1, tn−1).
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Now observe that

KH (Xn−1, tn−1) = KUH
(Xn−1, tn−1) + KW(Xn−1, tn−1)

where

KUH
(Xn−1, tn−1) =

∑

1≤i<j≤n

t1({i, j}) · · · tn−1({i, j})UH (γi, γj )

and

KW(Xn−1, tn−1) =
∑

1≤i<j≤n

t1({i, j}) · · · tn−1({i, j})W(γi, γj ).

The potential KUH
(Xn−1, tn−1) is non negative and can be bounded, for η > 0, as fol-

lows

KUH
(Xn−1, tn−1) ≥

∑

{i,j }⊂EH
τ

t1({i, j}) · · · tn−1({i, j})UH (γi, γj )

=
∑

{i,j }⊂EH
τ

t1({i, j}) · · · tn−1({i, j})UH (γi, γj )

+ η
∑

{i,j }⊂Eτ \EH
τ

t1({i, j}) · · · tn−1({i, j})

− η
∑

{i,j }⊂Eτ \EH
τ

t1({i, j}) · · · tn−1({i, j})

≥
∑

{i,j }⊂EH
τ

t1({i, j}) · · · tn−1({i, j})UH (γi, γj )

+ η
∑

{i,j }⊂Eτ \EH
τ

t1({i, j}) · · · tn−1({i, j}) − η|Eτ\EH
τ |

= KVτ (Xn−1, tn−1) − η|Eτ\EH
τ |

where

KV τ (Xn−1, tn−1) =
∑

1≤i<j≤n

t1({i, j}) · · · tn−1({i, j})V τ
ij

with V τ
ij being the positive (H dependent) pair potential given by

V τ
ij =

{
UH (γi, γj ) if {i, j} ∈ EH

τ ,
η if {i, j} ∈ Eτ\EH

τ ,
0 otherwise.

On the other hand, from the fact that W is stable it follows that also KW(Xn−1, tn−1) is
stable, see e.g. [4, 16, 17]. Namely, from (2.6) it follows that

KW(Xn−1, tn−1) ≥ −
n∑

i=1

B(γi).
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Hence wτ
H (γ1, . . . , γn) can be bounded by

wτ
H (γ1, . . . , γn) ≤ e+∑n

i=1 B(γi )+η|Eτ \EH
τ |

[ ∏

{i,j }∈Eτ \EH
τ

|W(γi, γj )|
]

×
[

1

η

]|Eτ \EH
τ |

×
∏

{i,j }∈Eτ

V τ
ij

∫
dμτ (tn−1,Xn−1)e

−KVτ (Xn−1,tn−1).

Applying now the tree graph identity (3.1) to the pair potential V τ
ij one conclude immediately

(see e.g. [4]) that, for all H ∈ [0,+∞)

∏

{i,j }∈Eτ

V τ
ij

∫
dμτ (tn−1,Xn−1)e

−KVτ (Xn−1,tn−1)

=
∏

{i,j }∈Eτ

|e−V τ
ij − 1| =

∏

{i,j }∈EH
τ

|e−UH (γi ,γj ) − 1||e−η − 1||Eτ \EH
τ |. (3.4)

Hence, considering that eη|Eτ \EH
τ ||e−η − 1||Eτ \EH

τ | = (eη − 1)|Eτ \EH
τ | we get

wτ
H (γ1, . . . , γn) ≤ e+∑n

i=1 B(γi )
∏

{i,j }∈EH
τ

|e−UH (γi ,γj ) − 1|
∏

{i,j }∈Eτ \EH
τ

∣∣∣∣
(eη − 1)

η
W(γi, γj )

∣∣∣∣

and due to the arbitrarity of η which can be take as small as we please, we obtain

wτ
H (γ1, . . . , γn) ≤ e+∑n

i=1 B(γi )
∏

{i,j }∈EH
τ

|e−UH (γi ,γj ) − 1|
∏

{i,j }∈Eτ \EH
τ

|W(γi, γj )|

and so

wτ (γ1, . . . , γn) = lim
H→∞

wτ
H (γ1, . . . , γn)

≤ e+∑n
i=1 B(γi )

∏

{i,j }∈EH
τ

|e−U(γi ,γj ) − 1|
∏

{i,j }∈Eτ \EH
τ

|W(γi, γj )|.

In conclusion we have that

|φT (γ1, . . . , γn)| ≤ e+∑n
i=1 B(γi )

∑

τ∈Tn

∏

{i,j }∈Eτ

F (γi, γj ) (3.5)

where

F(γi, γj ) =
{ |W(γi, γj )| if γi ∼ γj ,

|e−U(γi ,γj ) − 1| if γi � γj ,

and hence also, for n ≥ 1

|φT (γ0, γ1, . . . , γn)| ≤ e+∑n
i=0 B(γi )

∑

τ∈T 0
n

∏

{i,j }∈Eτ

F (γi, γj ) (3.6)
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where T 0
n is the set of all trees with vertex set I0

n

.= {0,1,2, . . . , n}. Inserting (3.6) in (2.10)
we get

	
γ0
P (ρ) ≤ 1 +

∞∑

n=1

1

n!
∑

(γ1,γ2,...,γn)∈Pn

e+∑n
i=0 B(γi )

∑

τ∈T 0
n

∏

{i,j }∈Eτ

F (γi, γj )ργ1 · · ·ργn

≤ eB(γ0)

[
1 +

∞∑

n=1

1

n!
∑

(γ1,...,γn)∈Pn

∑

τ∈T 0
n

∏

{i,j }∈Eτ

F (γi, γj )ργ1e
B(γ1) · · ·ργne

B(γn)

]
.

If we pose

ρ̃γ = ργ eB(γ ) (3.7)

and

|	̃|γ0
P (ρ̃) = 1 +

∞∑

n=1

1

n!
∑

τ∈T 0
n

∑

(γ1,...,γn)∈Pn

∏

{i,j }∈Eτ

F (γi, γj )ρ̃γ1 · · · ρ̃γn . (3.8)

We get

|	|γ0
P (ρ) ≤ eB(γ0)|	̃|γ0

P (ρ̃). (3.9)

So the convergence of |	̃|γ0
P (ρ̃) implies that of |	|γ0

P (ρ).

3.2 Planar Rooted Trees and Convergence

We think the trees with vertex set I0
n = {0,1,2, . . . , n} (i.e the elements of T 0

n ) as rooted
in 0. We define a map m : τ �→ m(τ) which associate to each labelled tree τ ∈ T 0

n a unique
drawing t = m(τ) in the plane, called the planar rooted tree associated to τ , as follows.

Given τ in T 0
n , place the vertex 0 (the root) at the leftmost position of the drawing. From

0 there emerge s0 branches ending at the first-generation vertices i1, . . . , is0 . Drawn these
vertices along a vertical line at the right of the root in such way that the higher has the low
label and labels increase as we go down along the vertical line (ordering increasing label
vertices “from high to low”). Then iterate this procedure for the descendants of each first
generation vertex (i.e. the second generation vertices) i1, . . . , is0 and so on (see Fig. 1).

There is a natural partial order ≺ among the vertices in a rooted tree. For u,v ∈ t , we
say that u precedes v and write u ≺ v (or v � u) if the (unique) path from the root to v

contains u. If {v,u} is an edge of t rooted tree, then either v ≺ u or u ≺ v. If u ≺ v. u is
called the predecessor and v is called the descendant. The root has no predecessor and it
is the extremum respect to the partial order relation ≺ in t . For each vertex v of t , we will

Fig. 1 The planar rooted trees associated to the trees (a) with edge set {0,3}, {1,3}, {2,3}, {1,4}, (b) with
edge set {0,2}, {0,3}, {1,2}, {2,4} and (c) with edge set {0,2}, {0,4}, {4,3}, {1,4}. Observe that (b) and (c)
are different planar rooted tree
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denote by sv the branching factor of v and we denote by v1, . . . , vsv the sv descendants of
v (v1 being the higher and vsv being the lower in the drawing).

Clearly the map τ �→ m(τ) = t is many-to-one and the cardinality of the preimage of a
planar rooted tree t (=number of ways of labelling the n non-root vertices of the tree with n

distinct labels consistently with the rule “from high to low”) is given by

|{τ ∈ T 0
n : m(τ) = t}| = n!∏

v�0 svi
! . (3.10)

We denote by T
0
n = the set of all planar rooted trees with n vertices and by T

0,k the set of
planar rooted trees with maximal generation number k; let also T

0 = ⋃
n≥0 T

0
n = ⋃

k≥0 T
0,k

be the set of all planar rooted trees.
Let now μ : P → [0,∞)P : γ �→ μγ be a positive valued function defined in P and let,

for each γ ∈ P , Rγ ∈ [0,∞)P be defined by the equations

μγ = Rγ ϕγ (μ), γ ∈ P, (3.11)

with

ϕγ (μ) = 1 +
∑

n≥1

∑

(γ1,...,γn)∈Pn

bn(γ ;γ1, . . . , γn)μγ1 · · ·μγn (3.12)

for certain functions bn : Pn+1 → [0,∞). Denoting Rγ ϕγ (μ) = Tγ0(μ), (3.11) can be visu-
alized in the diagrammatic form

.= μγ0 = Tγ0(μ)
.= + + + · · · + + · · ·

The sum is over all single-generation rooted trees. In each tree, vertices with open circles
with subscript γ represents a factor Rγ , vertices with bullets with subscript γ a factor μγ

and vertices other than the root must be summed over all possible polymers γ . At each ver-
tex with n descendants, a “vertex function” bn acts, having as arguments the n + 1-tuple
formed by the polymer at the vertex and the n polymers associated to the n descendants of
that vertex. With this representation, the iteration T 2(μ) = T (T (μ)) corresponds to replac-
ing each of the bullets by each one of the diagrams of the expansion for T . This leads to
planar rooted trees of up to two generations, with open circles at first-generation vertices and
bullets at second-generation ones. In particular, all single-generation trees have only open
circles. Notice that the two drawings of Fig. 1 appear in two different terms of the expan-
sion, and hence should be counted as different diagrams. More generally, the k-th iteration
of T involves all possible planar rooted trees up to k generations. In each term of the ex-
pansion, vertices of generation k are occupied by bullets and all the others by open circles.
A straightforward inductive argument shows that

T k
γ0

(μ) = Rγ0

[
k−1∑

�=0

�(�)
γ0

(R) + �(k)
γ0

(R,μ)

]
(3.13)
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where we have denoted R = {Rγ }γ∈P and

�(�)
γ0

(R) =
∑

t∈T
0,�

∏

v�0

{ ∑

(γ
v1 ,...,γvsv )∈Psv

bsv (γv;γv1 , . . . , γvsv )Rγ
v1 · · ·Rγvsv

}
. (3.14)

Here the product
∏

v�0 over the vertices of t must be done respecting the partial order of
the set of vertices in t , i.e. if v � u the v must be at the right of u in the product. The factor
�(k)

γ0
(R,μ) has a similar expression but with the activities of the vertex of the k-th generation

weighted by μ. Here we agree that b0(γv) ≡ 1 and
∏

∅ ≡ 1. We are interested in the � → ∞
limit of (3.14).

Proposition 3 Let μ : P → [0,∞)P : γ �→ μγ be a positive valued function and let, for
each γ ∈ P , Rγ ∈ [0,∞)P be defined by the equations (3.11). Let, ∀γ ∈ P , ρ̃γ ∈ [0,∞)

such that ρ̃γ ≤ Rγ . Then the series

�γ0(ρ̃) :=
∑

t∈T
0

∏

v�0

{ ∑

(γ
v1 ,...,γvsv )∈Psv

bsv (γv;γv1 , . . . , γvsv )ρ̃γ
v1 · · · ρ̃γvsv

}
(3.15)

is finite for each γ0 ∈ P . Furthermore

ρ̃γ0�γ0(ρ̃) ≤ μγ0 (3.16)

for each γ0 ∈ P .

Proof By definition �γ0(ρ̃) = ∑∞
�=0 �(�)

γ0
(ρ̃). By (3.13), the fact that T k

γ0
(μ) = μγ0 for all

k ∈ N, and the assumption ρ̃γ ≤ Rγ for all γ ∈ P , we obtain that

ρ̃γ0

n∑

�=0

�(�)
γ0

(ρ̃) ≤ Rγ0

n∑

�=0

�(�)
γ0

(R) ≤ μγ0

for all n. Thus, since the sequence of partial sums of the series ργ0�γ0(ρ̃) is monotonic
increasing and bounded by μγ0 , ρ̃γ0�γ0(ρ̃) converges, and ρ̃γ0�γ0(ρ̃) ≤ μγ0 . �

3.3 End of the Proof of Theorem 1

We first reorganize the sum over labelled trees appearing in formula (3.8) in terms of the
called planar rooted trees previously introduced. Namely, recalling that T

0
n is the set of all

planar rooted trees with fixed root 0 and n vertices (different from the root), we can rewrite
the r.h.s. of (3.8) as

|	̃|γ0
P (ρ̃) = 1 +

∞∑

n=1

1

n!
∑

t∈T
0
n

∑

τ∈T 0
n

m(τ)=t

∑

(γ1,...,γn)⊂Pn

∏

{i,j }∈Eτ

F (γi, γj )ρ̃γ1 · · · ρ̃γn . (3.17)

Observe that the factor
∑

(γ1,...,γn)⊂Pn

∏

{i,j }∈Eτ

F (γi, γj )ρ̃γ1 · · · ρ̃γn
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depends only on the planar rooted tree t = m(τ) associated to τ (labels of τ are dummy
indices in the sum), i.e.

∑

(γ1,...,γn)⊂Pn

∏

{i,j }∈Eτ

F (γi, γj )ρ̃γ1 · · · ρ̃γn =
∏

v�v0

{
sv∏

i=1

∑

γ
vi ∈P

F(γv, γvi )ρ̃γ
vi

}
(3.18)

with the convention that
∏sv

i=1

∑
γ
vi ∈P F(γv, γvi )ρ̃γ

vi
= 1 when sv = 0.

So in conclusion, inserting (3.18) into (3.17) and using also (3.10), we obtain

|	̃|γ0
P (ρ̃) =

∑

t∈T
0

∏

v�v0

1

sv!

{
sv∏

i=1

∑

γ
vi ∈P

F(γv, γvi )ρ̃γ
vi

}
. (3.19)

Comparing (3.19) with (3.15) we immediately see that |	̃|γ0
P (ρ̃) = �γ0(ρ̃) provided

bn(γ ;γ1, . . . , γn) = 1

n!
n∏

i=1

F(γ, γi) (3.20)

so that

ϕγ (μ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)∈Pn

n∏

i=1

F(γ, γi)μγi
= e

∑
γ̃∈P F(γ,γ̃ )μγ . (3.21)

Hence Proposition 3 yields the criterion (2.14) for the convergence of the series
|	̃|γ0

P (ρ̃) defined in (2.10). As a matter of fact, by Proposition 3, with the identification
(3.20), we have immediately that the series |	̃|γ0

P (ρ̃) defined in (3.8) is finite for each
γ0 ∈ P and ρ̃γ0 |	̃|γ0

P (ρ̃) ≤ μγ0 for each γ0 ∈ P . Now recalling (3.9) and (3.7) we obtain
ργ0	γ0(ρ) ≤ μγ0 .

4 Example. BEG Model with Infinite Range Interactions in the Low Temperature
Disordered Phase

As an example, we consider the Blume-Emery-Griffiths (BEG) model [2] with infinite range
interactions in the low temperature disordered phase. The model is defined on the cubic unit
lattice in d-dimensions Z

d by supposing that in each vertex x ∈ Z
d there is a spin variable

σx taking values in the set {0,−1,+1}. These spins interact via the (formal) Hamiltonian

H = −
∑

{x,y}⊂Z
d

[Jxyσxσy + Kxyσ
2
x σ 2

y ] + D
∑

x∈Z
d

σ 2
x (4.1)

where Jxy ≥ 0 and Kxy ∈ R are summable interactions and we put

J = 1

2
sup
x∈Z

d

∑

y∈Z
d

y �=x

(Jxy + |Kxy |). (4.2)

In the region of parameters

D > J (4.3)
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the ground state is σ = 0. This region is called the disordered phase. If Jxy and Kxy are
nearest neighbor interactions (or finite range), the low temperature disordered phase can be
studied using the standard Pirogov-Sinai theory.

We will make here different assumptions on the interactions Jxy and Kxy . Namely, we
suppose that there exist positive constants c, J1, λ and λ′ (with 0 < λ < λ′) such that

Jxy + |Kxy | ≤ 2J1

|x − y|d+λ
, ∀{x, y} ∈ Z

d , (4.4)

and
Jxy ≥ c

|x − y|d+λ′ or |Kxy | ≥ c

|x − y|d+λ′ (4.5)

where |x − y| is the usual nearest neighbor path distance, i.e., |x − y| is the length of the
shortest path of nearest neighbors connecting x to y. Due to the assumption (4.5) the low
temperature phase of the BEG model described by the Hamiltonian (4.1), cannot be studied
using the standard low temperature Pirogov-Sinai, which explicitly requires finite range
interactions. If we further assume that the polynomial decay is slow, e.g. by supposing

λ′ < 2d + 1 (4.6)

then this model is not even included in the class of models whose low temperature phase can
be studied via the extension of the Pirogov-Sinai theory to infinite range interactions given
in [13].

We’ll show in this section that the partition function of the spin model described by
Hamiltonian (4.1) can rewritten as the partition function of a polymer system of the type
considered in the previous sections. Then, using Theorem 1, we will prove that, in the dis-
ordered phase (4.3) and with the assumptions (4.4–4.6), such polymer expansion converges
for sufficiently low temperatures.

In order to do that, let us put the system in a finite box � ⊂ Z
d and let us define, for a fixed

spin configuration σ� in �, the subset of � given by P = {x ∈ � : σx �= 0}. We view this
set as the union of its connected components, i.e. P = ⋃n

i=1 pi with each set pi ⊂ � being
connected in the sense that for each partition A,B of pi (i.e. A ∪ B = pi and A ∩ B = ∅)
there exist x ∈ A and y ∈ B such that |x − y| = 1. The configuration σ� induces a (non
zero) spin configuration spi

on each connected component pi of P which is a function
spi

: pi → {−1,+1} : x �→ sx . The pairs pi = (pi, spi
) are the polymers associated to the

configuration σ�. By construction the correspondence σ� ↔ {p1, . . . ,pn} is one to one.
The distance between two polymers p = (p, sp) and p̃ = (p̃, sp̃) is the number d(p, p̃) =
minx∈p,y∈p̃ |x −y|. Note that if {p1, . . . ,pn} are the polymers associated to the configuration
σ�, then necessarily d(pi,pj ) ≥ 2 for all {i, j} ⊂ {1, . . . , n}.

With these definitions we can rewrite the Hamiltonian of the system in a box � ⊂ Z
d

with free boundary conditions as (here below β is the inverse temperature)

βH�(σ) =
∑

1≤i<j≤n

W(pi ,pj ) +
n∑

i=1

[βD|pi | − A(pi )],

where

W(pi ,pj ) = −β
∑

x∈pi
y∈pj

[Jxysxsy + Kxy], (4.7)

A(pi ) = β
∑

{x,y}⊂pi

[Jxysxsy + Kxy]. (4.8)
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Observe now that to sum over configuration σ� in � is equivalent to sum over polymers
configurations {p1, . . . ,pn} in � such that n ≥ 0 (n = 0, i.e. no polymers, is the ground
state configuration) and d(pi,pj ) ≥ 2 for all pairs {i, j} ⊂ {1, . . . , n}. Hence the partition
function of the system, at inverse temperature β and with free boundary conditions, is rewrit-
ten as

Z�(β) =
∑

σ�

e−βH(σ�) (4.9)

= 1 +
∑

n≥1

1

n!
∑

(p1,...,pn)∈Pn
�

d(pi ,pj )≥2

ρp1 · · ·ρpn
e−∑

i<j W(pi ,pj ) (4.10)

where

ρp = e−[βD|p|−A(p)] (4.11)

and

P� = {p = (p, sp) : p ⊂ � connected, sp function from p to {−1,+1}}.
We now extend the definition of W(pi ,pj ) to all pairs in P as

W(pi ,pj ) =
⎧
⎨

⎩

−β
∑

x∈pi
y∈pj

[Jxysxsy + Kxy] if d(pi,pj ) ≥ 2,

0 otherwise,
(4.12)

and put

U(pi ,pj ) =
{+∞ if d(pi,pj ) < 2,

0 otherwise.
(4.13)

With these definitions it is immediate to see that r.h.s. of (4.10) can be written as

Z�(β) = 1 +
∑

n≥1

1

n!
∑

(p1,...,pn)∈Pn
�

ρp1 · · ·ρpn
e−∑

1≤i<j≤n[U(pi ,pj )+W(pi ,pj )] (4.14)

which is the partition function of a polymer gas of the type (2.2) in which the polymers are
elements of the set P defined by

P = {p = (p, sp) : p ⊂ Z
dconnected and finite, sp function from p to {−1,+1}} (4.15)

with activity given in (4.11) and with incompatibility relation p � p̃ ⇔ d(p, p̃) < 2. The
short range pair interaction between these polymers, given by (4.13), is purely hard core,
while the long range pair interaction is given by (4.12). This long range pair interaction
W(pi ,pj ) is stable in the sense of (2.6). As a matter of fact it is easy to check that

∑

1≤i<j≤n

W(pi ,pj ) ≥ −
n∑

i=1

B(pi )

with

B(pi ) = βJ |pi | − A(pi )
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where J is defined in (4.2) and A(pi ) is defined in (4.8). So, by Theorem 1, the pressure of
this polymer gas (i.e. the free energy of our long range BEG model) is absolutely convergent
if there exist μp such that such that

e−β(D−J )|p| ≤ μpe−∑
p̃∈P F(p,p̃)μp̃ , ∀γ ∈ P. (4.16)

We choose

μp = e−β(D−J )|p|eα|p|. (4.17)

Hence, inserting (4.17) in (4.16), we obtain that the pressure of such contour gas can be
written in terms of an absolutely convergent series if, for some α > 0

∑

p̃∈P
F(p, p̃)μp̃ ≤ α|p|. (4.18)

By bounding again F(p, p̃) ≤ 1 whenever p̃ � p (recall that the short range potential U is
in this case purely hard core), we get

∑

p̃∈P
F(p, p̃)μp̃ =

∑

p̃∈P
d(p,p̃)≤1

μp̃ +
∑

p̃∈P
d(p,p̃)>1

|W(p, p̃)|μp̃

≤ |p|
[

2d sup
x∈Z

d

∑

p̃∈P
x∈p

μp̃

]
+ max

x∈p

∑

p̃∈P
d(x,p̃)>1

|W(p, p̃)|μp̃

where d(x, p̃) = miny∈p̃ |x − y|. Observe now that, by (4.4), |W(p, p̃)| ≤ βJ1|p||p̃|n−(d+λ)

whenever d(p, p̃) = n. Therefore

max
x∈p

∑

p̃∈P
d(p̃,x)>1

|W(p, p̃)|μp̃ ≤ |p|
∑

n>1

βJ1

nd+λ
max
x∈p

∑

p̃∈P
d(p̃,x)=n

|p̃|μp̃

≤ |p|
∑

n>1

βJ1

nd+λ
sup
x∈Z

d

∑

p̃∈P
p̃∩Sn(x)�=∅

|p̃|μp̃

≤ |p|
∑

n>1

βJ1

nd+λ
|Sn| sup

x∈Z
d

∑

p̃∈P
x∈p̃

|p̃|μp̃

where Sn = {y ∈ Z
d : |y| = n}. An easy calculation show that

|Sn| ≤ (2d)d

d! nd−1.

So we get

max
x∈p

∑

p̃∈P
d(p̃,x)>1

|W(p, p̃)|μp̃ ≤ βJ2|p| sup
x∈Z

d

∑

p̃∈P
x∈p̃

|p̃|μp̃
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where

J2 = (2d)dJ1

d!
∞∑

n=2

1

n1+λ
.

Hence

∑

p̃∈P
F(p, p̃)μp̃ ≤ |p|

[(
2d sup

x∈Z
d

∑

p̃∈P
x∈p

μp̃

)
+ βJ2 sup

x∈Z
d

∑

p̃∈P
x∈p

|p̃|μp̃

]

≤ |p|[2d + βJ2] sup
x∈Z

d

∑

p̃∈P
x∈p̃

|p̃|μp̃ ≤ Jβ |p|
∑

p̃∈P
x∈p̃

|p̃|μp̃

where

Jβ = 2d + βJ2.

Therefore, recalling (4.17), convergence condition (4.18) becomes

Jβ

∞∑

n=1

n[e−β(D−J )eα]n2nCn ≤ α (4.19)

where Cn is the number of connected sets of vertices of Z
d with cardinality n containing the

origin (the factor 2n in l.h.s. of (4.19) counts the number of functions from p to {−1,+1}
when |p| = n). Cn can be easily bounded by Cn for some C, e.g. one can take Cn ≤ (4d)n.
So condition (4.19) becomes

∞∑

n=1

n(xeα)n ≤ α

Jβ

(4.20)

where

x = 8de−β(D−J ). (4.21)

Formulas (4.20) and (4.21) imply that

e−β(D−J ) ≤ [e−αf (α/Jβ)] 1

8d

where

f (u) = 2u

2u + 1 + √
4u + 1

.

For example, taking α = 1/2 and bounding f (u) ≤ 2u/(2u + 1) (we are not looking here
for optimal estimates), we obtain that convergence occurs if

e−β(D−J ) ≤ 1

8d
√

e(2d + 1 + βJ2)

i.e., for all inverse temperatures β ≥ β0, where β0 is the positive solution of the equation

(2d + 1 + βJ2) = eβ(D−J )

8
√

ed
.
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